大家好,今天来为您分享永磁同步电机控制(永磁同步电机控制原理)的一些知识,本文内容可能较长,请你耐心阅读,如果能碰巧解决您的问题,别忘了关注本站,您的支持是对我们的最大鼓励!

永磁同步电机控制,是一种高效、精准的电机控制技术,它利用永磁体产生的磁场与旋转磁场进行同步,实现电机的高效运转。永磁同步电机控制原理是基于磁场变化和电流控制的相互作用,通过控制电流的大小和相位,实现对电机速度、转矩等参数的精确控制。

永磁同步电机控制

在永磁同步电机控制中,控制器负责测量电机的转速和负载,然后根据设定值调整电机的控制参数,使得电机的运行达到设定的要求。在电机启动阶段,控制器会根据初始的位置信号来确定电机的初次触发设定,然后通过调整相位差和电流大小,使电机能够按照预定的速度启动。在电机运行阶段,控制器会根据测量到的电机转速信息,实时调整电机的控制参数,以保持电机的稳定运行。

永磁同步电机控制的优势在于其高效性和精确性。由于永磁体产生的磁场是恒定不变的,所以永磁同步电机的功率因数较高,能够提高电机的能效。通过精确控制电流和相位,可以实现电机的精准转速控制和负载调整,满足不同工况下的需求。

永磁同步电机控制也存在一些挑战。如何确保控制器的精度和稳定性,避免电机在高速运行时失去同步,以及在恶劣环境下的可靠性等问题,都是需要解决的难题。

永磁同步电机控制是一项重要的技术,它在众多领域都有广泛应用,如工业生产、交通运输等。随着科技的不断进步,相信永磁同步电机控制的原理也会进一步完善和优化,为各行各业带来更加高效和可靠的电机控制解决方案。

永磁同步电机控制(永磁同步电机控制原理)

弱磁控制应用于电机在额定转速以上运行时的场合。当电机恒功率区工作时,随着电机速度的提升,电机定子电压也随之升高,当定子电压达到额定电压,此时若要继续提升电机转速,不能再通过继续升压的方式来实现,只能通过降低励磁磁链减小反电势部分的电压来维持电压平衡。永磁同步电机的由永磁体产生主磁场而无法调节励磁磁链,只有通过增加d轴去磁分量来削弱主磁场,方能继续提升电机转速。

优点:电机可运行于额定转速以上

缺点:永磁同步电机在弱磁恒功率区运行的效果较差,只能短期运行。长时间的弱磁运行必须采取特殊的控制方法。

适用场合:当电机电压达到额定,但仍需要继续升速的场合。

永磁同步电机控制原理

永磁同步电机是一种基于电磁感应原理的电动机,它主要由永磁体和定子两部分构成。永磁体作为转子,它内部由多个强磁体组成。定子上布置的线圈内通过交流电流,可以产生旋转磁场,这个旋转磁场会与永磁体内的磁场相互作用,从而驱动整个电机运转。相较于传统的异步电机,永磁同步电机具有快速响应、高效能、大扭矩等特点,常应用于高性能汽车、气象雷达、太阳能跟踪器、机器人等领域。它的运行效率高,因为永磁体内产生的磁场稳定,不会出现涡流损耗。与此永磁同步电机还可以通过电子调节器精确调节电流大小,进而控制电机转速,使其在不同负载下都能保持恰当的转速。永磁同步电机的使用寿命也比传统的异步电机要长。在永磁体工艺精湛的前提下,永磁体内强磁体的使用寿命随着电机的工作时间而微小衰减,不会导致整个电机的失效。这也使得永磁同步电机在工业自动化和精密定位控制的领域有着广泛的应用前景。

永磁同步电机控制解析

永磁同步电机由两个关键部件组成,即一个多极化永磁转子和带有适当设计绕组的定子。在操作过程中,旋转的多极化永磁转子在转子与定子的气隙形成一个随时间变化的磁通。这个通量在定子绕组端子上产生交流电压,从而形成用于发电的基础。

在此处所讨论的永磁同步电机使用一个安装在铁磁芯上的环形永磁铁。内部永磁同步电机不在这里考虑。因磁铁嵌入到一个电镀的铁磁芯内是非常困难的,通过使用适当厚度的磁铁(500μm)以及在转子和定子铁芯的高性能磁材料,气隙可以做得非常大(300~500μm)而没有明显的性能损失,这使得定子绕组在气隙中占据一定的空间,从而大大简化了永磁同步电动机的制造。永磁同步电机矢量控制技术

矢量控制技术诞生于上世纪 70 年代初,永磁同步电机的矢量控制系统是参照直流电机的控制策略,利用坐标变换将采集到的电机三相定子电流、磁链等矢量按照转子磁链这一旋转矢量的方向分解成两个分量,一个沿着转子磁链方向,称为直轴励磁电流;另一个正交于转子磁链方向,称为交轴转矩电流。

根据不同的控制目标调节励磁电流和转矩电流,进而实现对速度和转矩的精确控制,使控制系统获得良好的稳态和动态响应特性。

永磁同步电机控制系统常用方法有

1 引言

随着电力电子技术、微电子技术、新型电机控制理论和稀土永磁材料的快速发展,永磁同步电动机得以迅速的推广应用。与传统的电励磁同步电机相比,永磁同步电机,特别是稀土永磁同步电机具有损耗少、效率高、节电效果明显的优点。永磁同步电动机以永磁体提供励磁,使电动机结构较为简单,降低了加工和装配费用,且省去了容易出问题的集电环和电刷,提高了电动机运行的可靠性;又因无需励磁电流,没有励磁损耗,提高了电动机的效率和功率密度,因而它是近几年研究较多并在各个领域中应用越来越广泛的一种电动机。在节约能源和环境保护日益受到重视的对其研究就显得非常必要。因此。这里对永磁同步电机的控制策略进行综述,并介绍了永磁同步电动机控制系统的各种控制策略发展方向。

2 永磁同步电动机的数学模型

当永磁同步电动机的定子通入三相交流电时,三相电流在定子绕组的电阻上产生电压降。由三相交流电产生的旋转电枢磁动势及建立的电枢磁场,一方面切割定子绕组,并在定子绕组中产生感应电动势;另一方面以电磁力拖动转子以同步转速旋转。电枢电流还会产生仅与定子绕组相交链的定子绕组漏磁通,并在定子绕组中产生感应漏电动势。转子永磁体产生的磁场也以同步转速切割定子绕组。从而产生空载电动势。为了便于分析,在建立数学模型时,假设以下参数:①忽略电动机的铁心饱和;②不计电机中的涡流和磁滞损耗;③定子和转子磁动势所产生的磁场沿定子内圆按正弦分布,即忽略磁场中所有的空间谐波;④各相绕组对称,即各相绕组的匝数与电阻相同,各相轴线相互位移同样的电角度。

在分析同步电动机的数学模型时,常采用两相同步旋转(d,q)坐标系和两相静止(α,β)坐标系。图1给出永磁同步电动机在(d,q)旋转坐标系下的数学模型。

(1)定子电压方程为:

式中:r为定子绕组电阻;p为微分算子,p=d/dt;id,iq为定子电流;ud,uq为定子电压;ψd,ψq分别为磁链在d,q轴上的分量;ωf为转子角速度(ω=ωfnp);np为电动机极对数。

(2)定子磁链方程为:

式中:ψf为转子磁链。

(3)电磁转矩为:

式中:J为电机的转动惯量。

若电动机为隐极电动机,则Ld=Lq,选取id,iq及电动机机械角速度ω为状态变量,由此可得永磁同步电动机的状态方程式为:

由式(7)可见,三相永磁同步电动机是一个多变量系统,而且id,iq,ω之间存在非线性耦合关系,要想实现对三相永磁同步电机的高性能控制,是一个颇具挑战性的课题。

3 永磁同步电动机的控制策略

任何电动机的电磁转矩都是由主磁场和电枢磁场相互作用产生的。直流电动机的主磁场和电枢磁场在空间互差90°,因此可以独立调节;交流电机的主磁场和电枢磁场互不垂直,互相影响。长期以来,交流电动机的转矩控制性能较差。经过长期研究,目前的交流电机控制有恒压频比控制、矢量控制、直接转矩控制等方案。

3.1 恒压频比控制

恒压频比控制是一种开环控制。它根据系统的给定,利用空间矢量脉宽调制转化为期望的输出电压uout进行控制,使电动机以一定的转速运转。在一些动态性能要求不高的场所,由于开环变压变频控制方式简单,至今仍普遍用于一般的调速系统中,但因其依据电动机的稳态模型,无法获得理想的动态控制性能,因此必须依据电动机的动态数学模型。永磁同步电动机的动态数学模型为非线性、多变量,它含有ω与id或iq的乘积项,因此要得到精确的动态控制性能,必须对ω和id,iq解耦。研究各种非线性控制器用于解决永磁同步电动机的非线性特性。

3.2 矢量控制

高性能的交流调速系统需要现代控制理论的支持,对于交流电动机,目前使用最广泛的当属矢量控制方案。自1971年德国西门子公司F.Blaschke提出矢量控制原理,该控制方案就倍受青睐。对其进行深入研究。

矢量控制的基本思想是:在普通的三相交流电动机上模拟直流电机转矩的控制规律,磁场定向坐标通过矢量变换,将三相交流电动机的定子电流分解成励磁电流分量和转矩电流分量,并使这两个分量相互垂直,彼此独立,然后分别调节,以获得像直流电动机一样良好的动态特性。因此矢量控制的关键在于对定子电流幅值和空间位置(频率和相位)的控制。矢量控制的目的是改善转矩控制性能,最终的实施是对id,iq的控制。由于定子侧的物理量都是交流量,其空间矢量在空间以同步转速旋转,因此调节、控制和计算都不方便。需借助复杂的坐标变换进行矢量控制,而且对电动机参数的依赖性很大,难以保证完全解耦,使控制效果大打折扣。

3.3 直接转矩控制

矢量控制方案是一种有效的交流伺服电动机控制方案。但因其需要复杂的矢量旋转变换,而且电动机的机械常数低于电磁常数,所以不能迅速地响应矢量控制中的转矩。针对矢量控制的这一缺点,德国学者Depenbrock于上世纪80年代提出了一种具有快速转矩响应特性的控制方案,即直接转矩控制(DTC)。该控制方案摒弃了矢量控制中解耦的控制思想及电流反馈环节,采取定子磁链定向的方法,利用离散的两点式控制直接对电动机的定子磁链和转矩进行调节,具有结构简单,转矩响应快等优点。DTC最早用于感应电动机,1997年L Zhong等人对DTC算法进行改造,将其用于永磁同步电动机控制,目前已有相关的仿真和实验研究。

DTC方法实现磁链和转矩的双闭环控制。在得到电动机的磁链和转矩值后,即可对永磁同步电动机进行DTC。图2给出永磁同步电机的DTC方案结构框图。它由永磁同步电动机、逆变器、转矩估算、磁链估算及电压矢量切换开关表等环节组成,其中ud,uq,id,iq为静止(d,q)坐标系下电压、电流分量。

虽然,对DTC的研究已取得了很大的进展,但在理论和实践上还不够成熟,例如:低速性能、带负载能力等,而且它对实时性要求高,计算量大。

3.4 解耦控制

永磁同步电动机数学模型经坐标变换后,id,iq之间仍存在耦合,不能实现对id和iq的独立调节。若想使永磁同步电动机获得良好的动、静态性能,就必须解决id,iq的解耦问题。若能控制id恒为0,则可简化永磁同步电动机的状态方程式为:

此时,id与iq无耦合关系,Te=npψfiq,独立调节iq可实现转矩的线性化。实现id恒为0的解耦控制,可采用电压型解耦和电流型解耦。前者是一种完全解耦控制方案,可用于对id,iq的完全解耦,但实现较为复杂;后者是一种近似解耦控制方案,控制原理是:适当选取id环电流调节器的参数,使其具有相当的增益,并始终使控制器的参考输入指令id*=O,可得到id≈id*=0,iq≈iq*o,这样就获得了永磁同步电动机的近似解耦。图3给出基于矢量控制和id*=O解耦控制的永磁同步电动机

调速系统框图。

虽然电流型解耦控制方案不能完全解耦,但仍是一种行之有效的控制方法,只要采取较好的处理方式,也能得到高精度的转矩控制。工程上使用电流型解耦控制方案的较多。电流型解耦控制只能实现电动机电流和转速的静态解耦,若实现动态耦合会影响电动机的控制精度。电流型解耦控制通过使耦合项中的一项保持不变,会引入一个滞后的功率因数。

4 结语

上述永磁同步电动机的各种控制策略各有优缺点,实际应用中应当根据性能要求采用与之相适应的控制策略,以获得最佳性能。永磁同步电动机以其卓越的性能,在控制策略方面已取得了许多成果,相信永磁同步电动机必然广泛地应用于国民经济的各个领域。

永磁同步电机控制器的作用

控制器的功能和作用:

控制电机的转速,在电动车行业还要求控制器有刹车断电、欠压保护、欠压回升值设定过流保护等相应的保护功能。部分智能能型控制器还具有多种骑行模式,并且具有电气部件故障自检功能及很多智能能保护功能。

驱动器功能和作用:

1、控制伺服电机的起动、停机、转速等等;

2、对电机进行各种保护(过载,短路,欠压等)

3、对外部信号做出反应,通过内部的PID调节,控制伺服电机(位置,速度,扭矩);

控制器是控制电机转速的部件,也是电动车电动系统的核心,具有欠压、限流或过流保护功能。职能控制器还具有多种骑行模式和整车电气部件自检功能。控制器是电动车能量管理体制与各种信号处理的核心部件。

目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,可以实现比较复杂的控制算法,实现数字化、网络化和智能化。

功率器件普遍采用以智能功块 (IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过 热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。

功率驱动单元首先通过三相全桥整流电路对输入的三相电或者市电进行整流,得到相应的直流电。经过整流好的三相电或市电,再通过三相正弦PWM电压型逆变器变频 来驱动三相永磁式同步交流伺服电机。

功率驱动单元的整个过程可以简单的说就是AC- DC-AC的过程。整流单元(AC-DC)主要的拓扑电路是三相全桥不控整流电路。 

参考资料来源:百度百科-电机控制器

今天的关于永磁同步电机控制(永磁同步电机控制原理)的知识介绍就讲到这里,如果你还想了解更多这方面的信息,记得收藏关注本站。